Locally Rotationally Symmetric Models (LRS)
- Lema\^{\i}tre G: L'Univers en Expansion, Ann. Soc. Sci.
Bruxelles I A 53 (1933), 51 [in French]
English translation: Gen. Rel. Grav. 29 (1997), 641
- Tolman R C: Effect of Inhomogeneity in Cosmological Models,
Proc. Nat. Acad. Sci. U.S. 20 (1934), 69
- Bondi H: Spherically Symmetric Models in General Relativity,
Mon. Not. R. Astron. Soc. 107 (1947), 410
- Ellis G F R: Dynamics of Pressure-Free Matter in General
Relativity, J. Math. Phys. 8 (1967), 1171
- Stewart J M, G F R Ellis: Solutions of Einstein's Equations
for a Fluid which Exhibits Local Rotational Symmetry, J. Math.
Phys. 9 (1968), 1072
- Ellis G F R, M A H MacCallum: A Class of Homogeneous
Cosmological Models, Commun. Math. Phys. 12 (1969), 108
- Wainwright J: A Class of Algebraically Special Perfect Fluid
Space-Times, Commun. Math. Phys. 17 (1970), 42
- Eardley D, E Liang, R Sachs: Velocity-Dominated Singularities
in Irrotational Dust Cosmologies, J. Math. Phys. 13
(1972), 99
NB: Introduces the notion of "velocity-dominated" (initial)
singularities; employs as examples for analysing the singularity
structure the exact solutions for plane symmetric and spherically
symmetric expanding dust models (LRS class II); fairly technical.
- King A R, G F R Ellis: Tilted Homogeneous Cosmological
Models, Commun. Math. Phys. 31 (1973), 209
- MacCallum M A H: Cosmological Models from a Geometric Point
of View, in Cargèse Lectures in Physics Vol 6, Ed. E
Schatzman, (New York: Gordon and Breach, 1973), 61
- Collins C B, J Wainwright: Role of Shear in
General-Relativistic Cosmological and Stellar Models,
Phys. Rev. D 27
(1983), 1209
NB: For a perfect fluid subject to
the EFE it is assumed that i) $\Theta \neq 0$, ii) $\omega = 0$,
iii) $\sigma = 0$ and iv) $p=p(\mu)$, $(\mu+p) \neq 0$. It follows
that any solution is locally either a) FLRW
($G_{6}$ case), b) planar symmetric, tilted SH of Type-V (LRS
class II with $K = 0$) or its "temporally homogeneous"
counterpart ($G_{4}$ case), or c) spherically symmetric, spatially
inhomogeneous (LRS class II with $K > 0$) ($G_{3}$ case). Cases b)
and c) have $\dot{u} \neq 0$. Imposing a globally
physically reasonable equation of state only seems to leave the
FLRW case. This work renders a lot of (later) papers on shearfree
perfect fluids uninteresting from a physical point of view.
- Stephani H: A New Interior Solution of Einstein's Field
Equations for a Spherically Symmetric Perfect Fluid in Shear-Free
Motion, J. Phys. A: Math. Gen. 16 (1983), 3529
- Matravers D R, D L Vogel, M S Madsen: Helium Formation in a
Bianchi Type V Cosmological Model with Tilt, Class. Quantum Grav. 1
(1984), 407
NB: LRS, asymptotically like $k=-\,1$ FLRW.
- Goode S W, J Wainwright: Characterization of Locally
Rotationally Symmetric Space-Times, Gen. Rel. Grav. 18
(1986), 315
NB: Characterisation in terms of canonical
null and orthonormal frames for EFE with perfect fluid or
electromagnetic field source.
- Madsen M S, D R Matravers: Structure of the Initial
Singularity in LRS Bianchi Type-V Models, Class. Quantum Grav. 3
(1986), 541
- Collins C B, J M Lang: A Class of Self-Similar Perfect-Fluid
Spacetimes, and a Generalisation, Class. Quantum Grav.
4 (1987), 61
NB: Restriction to homotheties orthogonal to the matter fluid
flow, LRS geometry.
- Senovilla J M M: New LRS Perfect-Fluid Cosmological Models,
Class. Quantum Grav. 4 (1987), 1449
- Coley A A, B O J Tupper: Spherically Symmetric Spacetimes
Admitting Inheriting Conformal Vector Fields, Class. Quantum
Grav.
7 (1990), 2195
- Anninos P, R A Matzner, T Rothman, M P Ryan jr: How does
Inflation Isotropize the Universe?, Phys. Rev. D 43
(1991), 3821
NB:
investigation of the behaviour in the tilt angle for a
one-dimensional spatially inhomogeneous $\phi$ field in a LRS
Type-V spacetime (related to a $k=-\,1$ FLRW background);
classical results, no quantum fluctuations taken into account. Q:
How does matter know which way to move at the end of a de Sitter
inflationary phase? "Finally, the investigation shows, once again,
the necessity of carrying out computations in nonstandard
cosmological models to verify the utility of inflation."
- Hewitt C G, J Wainwright: Dynamical Systems Approach to
Tilted Bianchi Cosmologies: Irrotational Models of Type V, Phys. Rev. D
46 (1992), 4242
NB: LRS $G_{3}$.
- Knutsen H: Physical Properties of an Exact Spherically
Symmetric Solution with Shear in General Relativity,
Gen. Rel. Grav. 24
(1992), 1297
NB: Perfect fluid with $\mu > 0$, $p > 0$ in
non-comoving coordinates. Imposing dominant energy condition
leads to imaginary values of speed of sound. Naked singularity at
centre of fluid.
- Rangarajan R, M Srednicki: Chaotic Dark Matter,
Phys. Rev. D 46 (1992), 3350
- Kitamura S: On Spherically Symmetric Perfect Fluid Solutions
with Shear, Class. Quantum Grav. 11 (1994), 195
- Griffiths J B: A Class of Plane Symmetric Dust Solutions,
Gen. Rel. Grav. 27 (1995), 905
NB: LRS class II ($K = 0$).
- Kitamura S: On Spherically Symmetric Perfect Fluid Solutions
with Shear. II, Class. Quantum Grav. 12 (1995), 827
- Kitamura S: A Remark on the Invariant Characterization of a
Class of Exact Spherically Symmetric Perfect Fluid Solutions with
Shear, Class. Quantum Grav. 12 (1995), 1559
- Knutsen H: On a Class of Spherically Symmetric Perfect Fluid
Distributions in Non-Comoving Coordinates,
Class. Quantum Grav. 12 (1995), 2817
- Rendall A D: Crushing Singularities in Spacetimes with
Spherical, Plane and Hyperbolic Symmetry, Class. Quantum
Grav. 12 (1995), 1517.
Also: Preprint
gr-qc/9411011.
- Burnett G A, A D Rendall: Existence of Maximal Hypersurfaces
in Some Spherically Symmetric Spacetimes,
Class. Quantum Grav. 13 (1996), 111.
Also: Preprint
gr-qc/9508001.
NB: Deals with spacetimes possessing a (compact) constant mean
curvature $S^{1}\times S^{2}$ Cauchy surface. Technical.
- van Elst H, G F R Ellis: The Covariant Approach to LRS
Perfect Fluid Spacetime Geometries, Class. Quantum Grav. {\bf
13 (1996), 1099.
Also: Preprint
gr-qc/9510044.
- van Elst H:
Extensions and Applications of 1+3
Decomposition Methods in General Relativistic Cosmological
Modelling, PhD thesis, University of London, 1996
- Herlt E: Spherically Symmetric Nonstatic Perfect Fluid
Solutions with Shear, Gen. Rel. Grav. 28 (1996),
919
NB: Examination of
a class of models with $\dot{u}^{a} = 0 \Rightarrow p = p(t)$ in
terms of a Lie point symmetry analysis.
- Jhingan S, P S Joshi, T P Singh: The Final Fate of
Spherically Inhomogeneous Dust Collapse: II. Initial Data and
Causal Structure of the Singularity,
Class. Quantum Grav. 13 (1996), 3057.
Also: Preprint
gr-qc/9604046.
- Nilsson U, C Uggla: Spatially Self-Similar Locally
Rotationally Symmetric Perfect Fluid Models,
Class. Quantum. Grav. 13 (1996), 1601.
Also: Preprint
gr-qc/9511064.
- Singh T P, P S Joshi: The Final Fate of Spherically
Inhomogeneous Dust Collapse, Class. Quantum Grav.
13 (1996), 559.
Also: Preprint
gr-qc/9409062.
NB: LTB. Discusses the possible occurrence of naked singularities.
- Stephani H, T Wolf: Spherically Symmetric Perfect Fluids in
Shear-Free Motion - The Symmetry Approach, Class. Quantum Grav. 13 (1996),
1261
- Dwivedi I H, P S Joshi: Initial Data and the Final Fate of
Inhomogeneous Dust Collapse, Class. Quantum Grav. 14
(1997), 1223.
Also: Preprint
gr-qc/9612023.
NB: LTB.
- Marklund M: Invariant Construction of Solutions to Einstein's
Field Equations - LRS Perfect Fluids I, Class. Quantum Grav.
14 (1997), 1267.
Also: Preprint
gr-qc/9612014.
- van Elst H, G F R Ellis: Causal Propagation of Geometrical
Fields in Relativistic Cosmology, Phys. Rev. D 59
(1999), 024013.
Also: Preprint
gr-qc/9810058.
- Marklund M, M Bradley: Invariant Construction of Solutions to
Einstein's Field Equations - LRS Perfect Fluids II,
Class. Quantum Grav. 16 (1999), 1577.
Also: Preprint
gr-qc/9808062.
- Mustapha N, C Hellaby: Clumps into Voids, Preprint
astro-ph/0006083
NB: LTB.
Selected References
Last revision: Sat, 19-8-2000 (This page is under construction)